АЛГЕБРАІ́ЧНАЯ ТАПАЛО́ГІЯ,

галіна тапалогіі, якая вывучае ўласцівасці аб’ектаў і іх узаемных адлюстраванняў, што не мяняюцца пры неперарыўных дэфармацыях (гаматопіях). З кожнай тапалагічнай прасторай звязваецца паслядоўнасць алг. аб’ектаў Hn(x) (груп гамалогій); кожнаму неперарыўнаму адлюстраванню f:X → Y тапалагічных прастораў адпавядае набор гамамарфізмаў fn:Hn(X) → Hn(Y). Пры гэтым тапалагічная задача пераўтвараецца ў адпаведную алг. задачу. Калі сродкі алгебры дазваляюць рашыць такую задачу, то адваротным шляхам атрымліваюцца пэўныя меркаванні аб зыходнай тапалагічнай праблеме. У алгебраічнай тапалогіі звычайна разглядаюцца складаныя алг. аб’екты, напр., комплексы (мнагаграннікі, паліэдры), мнагастайнасці (замкнёныя, адкрытыя, гладкія, аналітычныя і інш.).

В.А.Ліпніцкі.

т. 1, с. 234

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)